阿里巴巴员工 2 万,百度技术人员超过6000,京东也有三四千攻城狮。 子柳: 就拿淘宝来说说,当作给新人一些科普。 ▼先说你看到的页面上,最重要的几个: 【搜索商品】这个功能,如果你有几千条商品,完全可以用select * from tableXX where title like %XX%这样的操作来搞定。但是——当你有10000000000(一百亿)条商品的时候,任何一个数据库都无法存放了,请问你怎么搜索?这里需要用到分布式的数据存储方案,关注公众号:程序员大咖,另外这个搜索也不可能直接从数据库里来取数据,必然要用到搜索引擎(简单来说搜索引擎更快)。好,能搜出商品了,是否大功告成可以啵一个了呢?早着呢,谁家的商品出现在第一页?这里需要用到巨复杂的排序算法。要是再根据你的购买行为做一些个性化的推荐——这够一帮牛叉的算法工程师奋斗终生了。 【商品详情】就是搜索完毕,看到你感兴趣的,点击查看商品的页面,这个页面有商品的属性、详细描述、评价、卖家信息等等,这个页面的每天展示次数在 30 亿以上,同样的道理,如果你做一个网站每天有 10 个人访问,你丝毫感觉不到服务器的压力,但是 30 亿,要解决的问题就多了去了。首先,这些请求不能直接压到数据库上,任何单机或分布式的数据库,承受 30 亿每天的压力,都将崩溃到完全没有幸福感,这种情况下要用到的技术就是大规模的分布式缓存,所有的卖家信息、评价信息、商品描述都是从缓存里面来取到的,甚至更加极致的一点“商品的浏览量”这个信息,每打开页面一次都要刷新,你猜能够从缓存里面来取吗?淘宝做到了,整个商品的详情都在缓存里面。 【商品图片】一个商品有 5 个图片,商品描述里面有更多图片,你猜淘宝有多少张图片要存储? 100 亿以上。这么多图片要是在你的硬盘里面,你怎么去查找其中的一张?要是你的同学想拷贝你的图片,你需要他准备多少块硬盘?你需要配置多少大的带宽?你们的网卡是否能够承受?你需要多长时间拷贝给他?这样的规模,很不幸市面上已经没有任何商业的解决方案,最终我们必须自己来开发一套存储系统,如果你听说过google的GFS,我们跟他类似,叫TFS。顺便说一下,腾讯也有这样的一套,也叫TFS。 【广告系统】淘宝上有很多广告,什么,你不知道?那说明我们的广告做的还不错,居然很多人不认为它是广告,卖家怎么出价去买淘宝的广告位?广告怎么展示?怎么查看广告效果?这又是一套算法精奇的系统。 【BOSS系统】淘宝的工作人员怎么去管理这么庞大的一个系统,例如某时刻突然宣布某位作家的作品全部从淘宝消失,从数据库到搜索引擎到广告系统,里面的相关数据在几分钟内全部消失,这又需要一个牛叉的后台支撑系统。 【运维体系】支持这么庞大的一个网站,你猜需要多少台服务器?几千台?那是零头。这么多服务器,上面部署什么操作系统,操作系统的内核能否优化?Java虚拟机能否优化?通信模块有没有榨取性能的空间?软件怎么部署上去?出了问题怎么回滚?你装过操作系统吧,优化过吧,被 360 坑过没,崩溃过没?这里面又有很多门道。 不再多写了,除了上面提到的这些,还有很多很多需要做的技术,当然并不是这些东西有多么高不可攀,任何复杂的庞大的东西都是从小到大做起来的,里面需要牛叉到不行的大犇,也需要充满好奇心的菜鸟,最后这一句,你当我是别有用心好了。 蔡正海 : 刚看了一篇很有意思的文章,讲的很清楚——《你刚才在淘宝上买了一件东西》 你发现快要过年了,于是想给你的女朋友买一件毛衣,你打开了。这时你的浏览器首先查询DNS服务器,将转换成ip地址。不过首先你会发现,你在不同的地区或者不同的网络(电信、联通、移动)的情况下,转换后的IP地址很可能是不一样的,这首先涉及到负载均衡的第一步,通过DNS解析域名时将你的访问分配到不同的入口,同时尽可能保证你所访问的入口是所有入口中可能较快的一个 (这和后文的CDN不一样)。 你通过这个入口成功的访问了的实际的入口IP地址。这时你产生了一个PV,即Page View,页面访问。每日每个网站的总PV量是形容一个网站规模的重要指标。淘宝网全网在平日(非促销期间)的PV大概是16- 25 亿之间。同时作为一个独立的用户,你这次访问淘宝网的所有页面,均算作一个UV(Unique Visitor用户访问)。最近臭名昭著的日PV量最高峰在 10 亿左右,而UV量却远小于淘宝网十余倍,这其中的原因我相信大家都会知道。 (责任编辑:admin) |