用户画像是根据用户特征(性别、年纪、地域等)、消费行为习惯(浏览、购买、评论、问答等)等信息进行抽象化,建立标签化的用户模型。构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户行为记录分析而来的高度精炼的特征标识。推荐系统的难点,其中很大一部分就在于用户画像的积累过程极其艰难。其次用户画像与业务本身密切相关。在用户标签足够丰富并且多的时候,就可以对用户聚类,例如用A/B/C/D等四种典型用户画像来代表商城的目标用户,还可以将新用户进行归类这些典型用户画像中。 商品分析模块主要根据商品的类目品牌、商品属性、产品评论、库存、销售记录、订单数据、浏览收藏、价格等数据来分析商品相似度、商品搭配度(可人工调整),并且对商品贴上目标用户标签。 用户画像、商品分析模块的数据都是为推荐算法提供基础数据。商品推荐的算法有很多种,需要根据推荐结果反馈,不断优化模型。有时候还需要考虑人工因素的权重,例自营商品排在前面、评分高的店铺优先推荐等。在推荐时,还用一些特殊推荐:购买此商品的顾客也同时购买、看过此商品后顾客购买的其他商品、经常一起购买的商品,都是基于商品进行的推荐。 如果完全按照用户行为数据进行推荐,就会使得推荐结果的候选集永远只在一个比较小的范围内,在保证推荐结果相对准确的前提下,按照一定的策略,去逐渐拓宽推荐结果的范围,给予推荐结果一定的多样性。 在大数据时代,商品推荐模块虽然一定程度上进行了精准营销,提高商品转化率。但是与推荐的准确性有些相悖的,是推荐的多样性。有时候会出现推荐混乱的情况,并且引起用户反感。譬如曾经浏览过某款电视,连续一个月都推荐这款电视;甚至购买过手机之后,还不断推荐其他手机。主要是因为推荐算法做得不够到位,很多用户行为数据没有收集处理,商品关联度没做好就盲目推荐商品。 (责任编辑:admin) |