人工智能和音乐的结合其实已并不是什么新鲜事。20世纪50年代,先锋作曲家Lejaren Hiller和Leonard Isaacson用电脑写了一首“Illiac Suite”。 该乐谱包括了按照某些音乐原理统计生成的音符,例如谐波相互依赖,并基于作曲家对传统音乐的知识规则合成。 直到最近,AI辅助音乐还主要停留在学术界。现在谷歌、索尼、IBM和其他公司都成立了相关的大型研究项目。还有像Jukedeck这样的初创公司,它利用人工智能为视频生成广告和背景音乐。Brain.fm提供功能性的人工智能合成音乐,来帮助用户放松、专注、和促进睡眠等,该技术已经开始盈利。 不同的项目也都看到了类似的结果,但大家都有自己的小算盘。谷歌正在为艺术家设计工具,设计开放式的实验项目,目的是激发创造力。Jukedeck把它的资源集中在工具易用性、市场营销以及寻求节省视频配乐的成本。Jukedeck的联合创始人Patrick Stobbs告诉我,公司希望扩大其客户基础,包括任何对制作音乐感兴趣的人:它希望使用这项技术来帮助那些想要成为音乐家的人,在不学习演奏乐器的情况下就可以创作歌曲。 他说:“就像Instagram让不是专业修图的我们更容易创作出很棒的照片,我们把Jukedeck看作是一个创意工具,让更多的人轻松地制作音乐,并拥有更多的动力。” 大约十年前,一些使用类似人工智能技术的音乐软件应用程序就已经出现了,其中大多是令人沮丧的结果。微软的自动编曲软件Songsmith在阿卡贝拉声道上生成卡西欧键盘式的伴奏。这个节目激发了无数搞笑视频的灵感,例如,Freddie Mercury的“We Will Rock You”的表演,听起来特别像含糊的拉丁Muzak音乐。 从那以后,尽管技术和品味还在继续发生着冲撞,但事情已经开始发生着翻天覆地的变动。从去年开始,在不久的将来,全世界都能看到人工智能生成的音乐将会是什么样子。制片人Alex Da Kid与IBM Watson超级计算机合作,创造了一个朗朗上口的情感歌谣“Not Easy”。 Watson使用了5年的文化数据,包括新闻标题、互联网搜索、电影概要和社交媒体内容,来分析他们周围的趋势和人们的情绪。它还处理了超过2.6万首流行歌曲,寻找共同的主题和音乐模式。利用这一信息,超级计算机确定了近代历史的“情感脉络”,以及可以引起听众强烈情感共鸣的音乐元素。然后Alex用这些数据来选择心碎的主题,以及他喜欢的音乐短语和抒情片段。 随着获得了格莱美的提名,他们又合作了创作了一首更广域的歌曲。“Not Easy”在48小时内到达iTunes热门歌曲排行榜上的第四名,它基本是被遗忘了,但还好还有它背后的故事。原本试图吸引数百万听众的情感温度,似乎并没有表达出来。和Auto-Tune的对比再次出现了:在那些追求完美流行音乐的人手中,AI可以通过数字化的方式实现其最终的成功。 2012年夏天,在欧洲研究委员会(European Research Council)的资助下,索尼计算机科学实验室(Sony CSL)开始了一个为期5年的项目。结果介于歌曲“Not Easy”和Magenta项目之间。自上世纪90年代以来,计算机科学家、爵士乐和流行音乐家、索尼CSL的导演Francois Pachet一直在做与音乐和人工智能有关的研究。他和他的团队与艺术家们的合作比谷歌更直接,他们的目标是用一组更着重输出的名为“Flow Machines”的算法来创造出全新的流行音乐。 去年9月,由Flow Machines协助完成的歌曲“Daddy’s Car”大火。这首和法国作曲家Benoît Carré一同完成的歌曲听上去非常像上世纪60年纪中期Beatles的风格。有可能为了创作这首歌曲,Flow Machines听了非常多Beatles的歌曲。 索尼CSL传播部的工作人员Fiammetta Ghedini表示:“Daddy’s Car其实有一点像是模仿作品。这是对歌曲风格的一次尝试。如果Beatles能够再现江湖的话,你应该能够感受到是什么风格。” Flow Machines对“风格”的理解是依赖于数据的,这意味着你用特定的音乐来训练它,它就会预测创作音乐的人是想要这种风格的音乐。换句话说,它只根据所选的数据集和程序员设置的约束来理解音乐的规则。在创作Daddy’s Car的时候,Flow Machines给了Carré几个Beatles式旋律和和弦的建议。 (责任编辑:admin) |