第一站 - 轻松上网从此开始!

上网第一站

当前位置: > SEO >

AI产品之路(一):机器学习(2)

时间:2017-11-17 14:03来源:我来投稿获取授权
以下内容来自网络或网友投稿,www.swdyz.com不承担连带责任,如有侵权问题请联系我删除。投稿如果是首发请注明‘第一站首发’。如果你对本站有什么好的要求或建议。那么都非常感谢你能-联系我|版权认领
深层神经网络,大概可以理解为我们所谓的深度学习(Deep Learning),而深层神经网络,下面又分为很多网络结构,如DNN、CNN、RNN 但这里要注意区分的是,深

  “深层神经网络”,大概可以理解为我们所谓的“深度学习”(Deep Learning),而深层神经网络,下面又分为很多网络结构,如DNN、CNN、RNN

  但这里要注意区分的是,深浅的区别不仅仅是“网络层数”的区别,更重要的是,“深度学习”(深层神经网络)较其他所有机器学习最厉害的一点:

  他可以进行数据的特征提取“预处理”(省去了数据人工标注的da麻烦,同时可以对更多维和复杂的特征进行向量的提取和空间向量的转换,方便后续处理),而这也是他为什么要很多层的原因,因为其中多出来的网络层数,都是要用来进行数据特征提取预处理的

  相信到一步,结合上面的脑图,我们就能分清“机器学习”与“深度学习”的真正区别了,不是简单的包含关系。

  4.回归

  个人觉得回归作为了解机器学习过程,是一个很好的入门了解。

  所谓“回归”,看起来很深奥,其实并不是这样。我举个栗子:

  y=2x这个一元函数,假设我们现在不知道他的斜率w=2,而我给你5数据y=2,4,6,8,10,对应的x分别为1,2,3,4,5。你是不是会自动假设,那他们之间是2倍的对应关系?没错!你“自动假设他们有某种对应关系”的这个过程,就叫“回归”;而你假设他们的关系是“2倍”,这就是“线性回归”了。

  所以回归的定义(个人理解):我们看到大量事实或数据中,假设他们之间存在着某种对应关系。而机器学习中的回归(监督学习)要做的就是:尝试去让计算机找到大量数据之间这样的对应关系,那怎么找呢?

  我们先假设一个关系吧:y=wx+b ,其中 w为权值、b为偏置,w为1Xn矩阵向量,x为nX1的矩阵向量(这几个概念就不做数学解释了,而为什么x不是实数而是矩阵,那是因为我们在现实世界的数据中,可能有N多个维度….而不仅仅是一维就可以描述这个数据特征的)

  现在我要评判一个橘子的“好坏程度”,y代表“好坏程度”,而且都是打过标签的。x为一个三维矩阵向量分别代表【大小、颜色、形状】。那么代入公式:

  y=w1X大小+w2X颜色+w3X形状+b (这里先假设b为0吧)

  那么现在的任务就是分别找到合适的w1,w2,w3的值来准确描述橘子的“好坏程度”与“大小、颜色、形状”的关系。那么怎样确定是否合适呢?

  通过“损失函数”Loss来定义(这里数学公式就不列了),Loss的含义就是把样本中所有x都代入“假设公式”wx+b中(这时候w与b的值几乎肯定是不准确的),然后得到值与真实的y值做比较的差值,就是损失函数Loss。那么Loss越小,说明这时候的w与b的值越接近真实的“线性关系”。所以我们最终机器学习的目的,就是求解出让Loss越小(当然无限接近于0最好)的对应的w与b的值,求出来之后,也就是机器学习模型“训练结束”!之后就是用验证集去验证是否会过拟合,来检验模型的泛化能力

  当然这里要做几点说明了:

  (1)这只是最为最为简单的一个机器学习栗子说明,着重了解一下机器学习中回归的基本思想

  (2)这里我们并没有说怎么去寻找让Loss最小(或符合条件)的对应w与b的映射关系,后面我在分享“BP前馈神经网络的梯度下降时”会简单介绍这个求解基本思想过程

  (3)如果你分析的数据本身是非线性关系,而你假设他们是线性关系并用对应的模型去训练,那么结果一定是“欠拟合”的(所以对于欠拟合的一另一个表达:你的想法不符合这个世界的现实…)

  上面的关于机器学习的一些基本概念的分享,后续持续更新,希望能和大家一起走在AI的路上!

(责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发布者资料
第一站编辑 查看详细资料 发送留言 加为好友 用户等级:注册会员 注册时间:2012-05-22 19:05 最后登录:2014-08-08 03:08
栏目列表
推荐内容
分享按鈕