这几乎是对“行业壁垒”理论的一种极端化描述:这家公司属于AI产业链最上层,选择了安防和航空等几个“行业+AI”深耕;他们技术不错,但不靠技术本身赚钱,却赚了更多的钱。剖析这家闷声赚钱的公司,可能是探究AI商业模式的一条捷径。 而读完这篇文章,我希望你相信一件事:在广袤AI的疆域,神仙有神仙的活法,精灵有精灵的活法,巨头们的生态博弈,并没有堵死创业者的路。 只靠技术赚钱,可能性不大 在采访中,冯一村的一个观点令人印象深刻:科技世界,最赚钱的公司往往不是聚光灯下的公司。 譬如在大数据时代(短暂流行过后,这个词已经老了),最赚钱的不是大数据公司,而是为大数据提供底层支持的云计算公司;而在人工智能时代,真正激发的是大数据市场:“因为AI最重要的逻辑是用数据做智能化训练,所以在人工智能时代,最赚钱的公司并不是像商汤和Face++这类的公司,不是说这些公司不赚钱,他们也赚钱,但他们的盈利模式并没有呈现很清晰的特点。” 事实上,在不少投资人眼中,倘若人工智能团队的自我定位永远是“技术提供商”,没有给客户提供一套整体解决方案,那么它在产业链中的价值将会日趋暗淡。 这不难理解。原因之一,如前所述,就像那篇《保卫科大讯飞》所写,巨头会免费提供图像和语音识别等通用技术。原因之二,AI本身的技术门槛正在下降,就像猎豹移动傅盛所言:“深度学习的核心是数据驱动,虽然有模型调参,有自己的优势,但别人有更多的数据调参会很快拉平优势,很难真的想像一家公司通过提供技术输出就能成功。未来深度学习是基础的技术运用,很多公司都具备深度学习的研发能力。” 举个例子,在过去,初创AI团队的进展受制于软件开发所花费的时间,但如今,巨头们纷纷开源了自家的深度学习框架,初创团队可以如插件一般,将人脸识别等技术嫁接到自己的系统中,让没有太多深度学习背景的开发者也能容易上手。 换句话说,单纯靠技术本身卖钱,天花板很低,也很危险。 那么问题来了,AI创业路在何方? 我认为,最可行的出路,来自于程浩提出的“一横一纵”理论:“一横”是指你提供的技术服务,通常“一横”能服务很多行业,但一定要找到几个最有机会的垂直市场,深扎进去,升级为“一纵”——也就是,把技术转化为产品,卖给客户,商业变现,再通过商业反馈更多数据,夯实技术,形成商业闭环。 总之在我看来,随着未来技术门槛的下降,AI创业者的身份认同,要从最原始的“技术提供者”,逐渐转向成为一个“行业专家”。而在这个过程中,他们应时刻谨记两点:1,面对自己时,深耕几个垂直领域,然后等待时间的回报;2,面对客户时,从技术提供者进化为一个“赋能者”,授之以鱼不如授之以渔。 授之以鱼不如授之以渔 AI创业者深耕具体行业,还有另外一个原因:AI将在To B和To G领域率先落地。 其实不止人工智能,追溯历史、计算机、互联网、智能手机,任何颠覆性技术的发展路径大抵相似:缘起于军方和政府(我一直觉得,冷战时期的美军是人类史上最大的“黑科技集中营”,这篇不赘述了),待到技术相对成熟后交还与企业,然后用于特定行业,最后变成大众消费品——AI亦如此,去年AI的落地过程,其实更多是向To B和To G等传统行业渗透的过程。 而人工智能To B和To G落地的第一站,很多都是在传统行业,用AI进行辅助决策。拿海云举例,他们以大数据可视分析起家,现在则把AI与可视分析技术结合,然后选择四个“行业+AI”深耕:公共安全,交通运输,军民融合和智慧城市,推出与这些行业结合紧密的解决方案,提升客户的数据决策能力。 颇值一提的是,作为真正意义上的“行业观察者”,他们在与行业客户多年的交流中发现,客户真正需要的不是提出的具体“技术需求”,而是一整套随机应变的综合能力——别忘了,授之以鱼不如授之以渔,海云数据也因此提出了“能力服务”的概念,这一概念现阶段的标志物,就是图易AI能力服务平台。 (责任编辑:admin) |