陈新:韩都衣舍的BI系统刚刚上线,虽然BI系统完成了各项数据的直观统计,但目前对各部门业务数据的分析总结还都处在起步阶段,因此需要我们解决的专业问题还有很多。 精细化运营以用户为基础 亿邦动力网:目前电商的数据也是海量,分析方法多样,评价销售数据的指标主要有哪些?根据直接对销售额产生的效果依次从高到低怎么排序? 陈新:主要有每日发货数据分析、每日销售数据分析、每日库存量分析。通过这些分析图表就能直观的看到每天的销售额、订单量、成本还有库存情况。 从高到低的排序为:每日销售数据分析、每日发货数据分析、每日库存量数据分析。 张韶峰:评价销售数据的指标主要有:订单量、发货量、客单价、总销售商品件数、总销售额、总毛利额、总库存等等。重要性从高到低大致排序是:总销售额或者总毛利额(不同的阶段关注重点有不同)、总发货量、总库存量。 亿邦动力网:韩都衣舍目前应用数据分析产生的销售额有具体的可分享数据吗?比如有哪些数据应用直接提升客单价?提升用户体验? 陈新:销售额数据目前还只是总数,鉴于客户CRM系统尚未建立,目前还没有对客户的销售数据进行深入挖掘。未来可以通过客户订单数据聚类方法对客户进行分类。为不同类别的客户建立不同的营销策略提供依据。 亿邦动力网:如果让二位选择各自认为最重要或者最喜欢的数据分析与挖掘应用,二位分别认为是什么?为什么? 陈新:目前的数据分析与挖掘应用中,个人觉得订单的销售和发货分析比较重要。因为能直观的看到每天的销售情况,也直接影响到各部门的业绩和整体的销售水平。 张韶峰:有两类:1)预测类。预测是数据挖掘领域一个非常重要的分支,比如预测什么用户可能会喜欢什么商品,某种商品下个月的销量会如何等等。这种类型的应用能够直接应用到业务运营中去。比如个性化商品推荐引擎、库存预测引擎等等; 2)统计分析类。主要指使用各种统计分析方法、采用各种图表展现手段,让企业管理者和各个业务运营人员看见一些关键指标的现状,从而发现值得改进的环节。 亿邦动力网:如果说用户行为分析是精细化运营的前提,那么电商企业要实现精细化运营还应该从哪些方面着手? 陈新:谈到精细化运营,自然要把用户定位放在第一位。任何商务的过程本质是“满足客户期望”并“超越期望”。所以我们要首先要对用户信息进行细致分析。每一个人的兴趣、爱好、个性、文化、经济状况等不相同,在购买心理上也会产生差异,所以就形成了各种各样的购买动机。我们认为在项目全面推广之前电商应该重视用户的体验,这样才能提升用户的忠诚度。 用户定位是基础,那数据分析就是精细化运用的支柱。用户在电子商务商城上有了购买行为之后,就从潜在客户变成了商城的价值客户。数据库会保存下用户的交易信息,包括购买时间、商品、数量、金额等,我们可以基于商城的运营数据对他们的交易行为进行分析,以估计每位用户的价值,及针对用户扩展营销的可能性。 张韶峰:电子商务企业必须从前端的营销、中端的网站运营到后端的供应链、物流仓储等所有环节进行优化,以实现精细化运营。 目前我们看到绝大多数电商企业在营销和网站运营两个环节存在大量的资源浪费现象。今年电商企业必须更加重视效果营销、站内转化和重复购买。不管是前端、中端还是后端,实现精细化运营的前提是电商企业必须建立起数据驱动运营的文化以及完善的数据分析与商业智能系统,通过数据分析找出最有效的营销方式、最有潜力的商品、最具价值的顾客群。 另外,针对提升站内转化率和顾客重复购买率,电商企业还应该建立个性化推荐系统以及提高顾客重复购买率的个性化邮件营销系统。 推荐引擎为红孩子贡献订单超15% 亿邦动力网:百分点是做推荐引擎的,就是帮企业分析用户购买浏览过程中推荐哪些关联产品最好?目前这个技术在国内还有其他公司在做吗?技术核心是什么?做的难度是什么? 张韶峰:事实上,推荐引擎的确包含“关联推荐”,但“关联推荐”并不是推荐引擎的全部,这是大家看待推荐引擎时容易陷入的一个普遍误区。 推荐引擎有两种应用场景: 1),当企业不知道用户具体关心哪些具体的内容和商品时(比如用户刚刚到达网站首页或者着陆页,或者只是进入了某个频道页,但未到达具体的文章页或商品页),完全基于用户过去的行为猜测他们可能会喜欢的内容和商品。这种推荐就是真正意义上的“个性化推荐”; 2),当用户已经在关注某件具体的商品时,推荐出与该商品有某种关联的其他商品,这种推荐就是大家常说的“关联推荐”。百分点公司的推荐引擎同时涵盖这两种类型的推荐。百分点是专门提供第三方推荐引擎服务的公司,除了百分点,阿里巴巴、腾讯等大公司也在自己的一些产品中零星地应用了推荐技术。 推荐引擎技术的核心包括:用户行为建模、网页内容建模(包括文本内容和图像、视频内容)、海量实时数据处理,以及将用户心理学、社会学知识融合到推荐引擎中的能力。 做推荐引擎的主要难点是:1)算法。算法要先进并且在大数据环境下要稳定可靠;2)数据。推荐引擎完全是基于真实数据来建模的,没有足够的高质量数据,无法做出有应用价值的推荐 亿邦动力网:很多电商企业形成了一些刻板的印象,认为推荐引擎采用的都是采用相似性的挖掘方法(例如关联规则和协同过滤),推荐引擎给出的“看过还看过,买过还买过”这类的推荐通过简单的数据库查询就可以完成。那么百分点在推荐引擎上是怎么做的? 张韶峰:“看过还看过”、“买过还买过”这种叫法,完全是为了方便消费者好理解。事实上,这种看似名字简单的推荐栏,背后的算法逻辑并不简单,更加不可能通过简单的数据库查询就能够完成。 至于关联规则和协同过滤,是已经出现10-20年的比较陈旧的算法,他们有很多缺陷,因此百分点内部大量使用了其他一些近几年出现的更为先进的算法,比如,百分点首席科学家周涛教授和他的导师张翼成教授等人发明的物质扩散算法、热扩散算法等等。 (责任编辑:admin) |