第一站 - 轻松上网从此开始!

上网第一站

当前位置: > SEO >

智能投顾十大趣谈:基金从业者该不该恐慌(3)

时间:2017-05-27 09:57来源:我来投稿获取授权
以下内容来自网络或网友投稿,www.swdyz.com不承担连带责任,如有侵权问题请联系我删除。投稿如果是首发请注明‘第一站首发’。如果你对本站有什么好的要求或建议。那么都非常感谢你能-联系我|版权认领
对于深度学习而言,人才分几个档次。第一级是开宗立派的人物,也就是发明CNN(卷积神经网络)、DNN(深度神经网络)、RNN(循环神经网络)这些流派的宗师级人

  对于深度学习而言,人才分几个档次。第一级是开宗立派的人物,也就是发明CNN(卷积神经网络)、DNN(深度神经网络)、RNN(循环神经网络)这些流派的宗师级人物。还有一类人才,是真正能够把参数调好的人,也非常稀缺。比如对于多层神经网络,是设置10层、5层还是7层效果最好?每层都有很多参数。还有给入多大的数据量才会产生理想结果?因为到一定程度,你会发现输入越多数量,结果反而可能会变坏。

  这是一个经验值,甚至没有规律,所以业内开玩笑叫做炼金术。把一堆东西放一起,不知好坏,天天试,跟做化学实验室一样,还没有固定的化学方程式。大部分在美国读PhD的中国留学生是负责调参数的。但调参数能调好的人,在AI界也算是凤毛麟角,一年的package下来也有100~200万美金。要知道不仅在中国,在全球,人工智能创业公司最大的挑战都不是钱,而是雇不到人。

  但这里就产生了一个问题。比如输入大量数据后,经过10层神经网络筛选得出一个结论,可你是没法回溯怎么得出这个结论的。所以深度学习最大的问题是黑箱。如果想避免一个错误,要修改参数,那所有训练又得重新来一遍。正因为这个问题,自动驾驶一旦出现车祸,很难向美国交通局去解释。在美国发信用卡的领域也存在一样的问题。拒绝给一个客户发信用卡,你得告知是基于什么规则,不然人家可能会告你,但深度学习没办法解释这件事。所以最近的一些算法已经做出了一些优化。

  趣谈九 国内智能投顾发展境况如何?

  很多人说中国资产类型太单一,ETF数量不够,很难满足智能投顾的资产配置需求。我们之前看了有20多家智能投顾公司,实际发现他们的配置还是很丰富的。简直可以说是五花八门,有的配P2P资产、有的配小贷,还有人拆信托、拆私募,做MOM、FOF模式的也有。大家都打着智能投顾的旗号,但剥开皮看都不一样,很多时候不知后面卖的什么东西。这也正是国家在加强机器人投顾管理的原因。

  还有一个重要问题是,中国基本没有买方投顾,大家都在挣后端销售佣金,更像卖方雇佣的销售。所以对国内的智能投顾而言,本来是个投资顾问的事儿,却在做销售的活儿。这混淆了投资咨询与产品销售之间的界限。那么用户如何来评判你投资建议的公立性?这让消费者很难信智能投顾这件事。这正是国家正加紧合规的理论依据。

  另外国内智能投顾最大的问题还在于金融产品代销资质。所以在中国做智能投顾,真正合规的只能是由大的金控公司来做,他们拥有所有的销售牌照和资格,才能给用户去做丰富的资产配置。不然你都没有太多可配置的资产,跟真正意义上的智能投顾有很大差距。而对创业公司来言,每个牌照的价格都非常贵,还要搞定各种通道、支付,真的玩不起。

  趣谈十 智能投顾悖论

  我们知道股票交易有赔有赚,如果大家都买了同一套软件,可以预测该买哪支股票,那么市场上谁卖呢?在一个下跌市场当中,一旦像Vanguard、BlackRock这样的行业巨头,用机器人投顾做出抛售指令,大家都在抛盘,而没人买盘,单边行情会不会导致市场崩溃?其实我认为这样的问题可以避免。因为真正的智能投顾是能根据每个人的风险偏好不同,做出不同的投资组合和交易选择,这样才能让市场有赔有赚的运行起来。

  最后说一个有趣的话题,那就是人对机器的容忍度,要远远小于人对自己的容忍度。最简单的无人车犯错,大家都觉得不可容忍。但人天天都在犯错,却很容易获得谅解。这是一个客观问题。回到智能投顾这个话题,面对中国股市普遍难以盈利的行情,你说智能投顾在一个下跌市场当中,如何安抚用户亏损的情绪呢?其实很简单。周围10个人如果你是亏的最多的,人家都赚,你肯定不开心。但如果机器用数据告诉你,相比量化投资和你周围的人,你的回撤是最少的,那你肯定就不会太苛责机器了。

(责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发布者资料
第一站编辑 查看详细资料 发送留言 加为好友 用户等级:注册会员 注册时间:2012-05-22 19:05 最后登录:2014-08-08 03:08
栏目列表
推荐内容
分享按鈕