在一段时间内,用户在一次使用此产品的情况。团子举个例子:7月10日新增1000人,7月11日500人使用,12日400人、13日300人、14日200人、15日100人。因此10日的留存率50%,以此类推,如图。漏斗图怎么做?问百度哈~ (3)用户平均使用时长 用户在平台逗留的时间,通过平均算法,了解整体使用时长情况,排出异常使用情况。它的计算方式=所有用户使用时长之和/总人数。用户平均使用时长越高,说明用户对平台的重要性越高。因此,我们可以通过使用时长可以,作为划分用户等级的指标之一。 (4)用户注册数 在一定时期内,当前平台新用户注册情况。 (5)用户活跃度 按照某一时间内,例如15天,一个用户在平台的启动了一天,那么它的活跃度为1。如果15天之内启动2次,那么他的活跃度为2。以此类推,如果活跃度越高,说明对平台的贡献越高。 有一次在产品社交群中,有人问如何进行用户划分?团子认为用户的划分,主要是根据用户对平台的贡献程度,贡献程度可以根据用户使用情况、付费情况两个维度进行计算,计算的权重,根据当前平台情况。例如平台更多时注重付费,那么付费的比重相对高。 (6)用户流失率 一个观察周期内的活跃用户,如果在下一个观察周期内不活跃,则称为流失用户.用户流失率=流失用户/总用户。通过流失率了解平台走失的情况。 (7)用户回流 设置三个观察周期,回流用户指第一周期活跃,第二周期流失,在第三周期又活跃(回访)的用户。 了解以上几个大众的指标,通过平台得到相应的数据,然后用excel进行数据整理,作出图表。 在进行数据图表描述时,我们时刻需要提醒自己为什么会有这一数据的出现,什么原因导致这个结果的出现,对于当前的数据情况,我们需要进行什么样的改进,提出什么样的意见。 案例分析:团子以近日小黄车举办过的“全城搜集小黄人”活动为例,通过ASO100获取他们近期的下载情况,进行数据描述一下。如这是小黄车安卓系统的下载情况,活动时间是7月7日至14日,为了让大家更好的了解这次活动对小黄车新增下载有何影响,将时间周期放置从4日至18日,同时结合其他竞争品(摩拜、小蓝车)情况,进行一同分析。 通过以下几个图表,我们可以得知几点信息: 根据数据的时间周期来看,小黄车正在推出一系列相关的小黄人主题活动,从6月底到7月中旬,就开始持续的做活动。使得用户下载基数很大,因此下载总数是其他竞争品下载总数约3倍。 站在市场整体角度来看以下图表,我们可以观察到一个有趣的现象就是:他们三家的下载波动都十分相似和雷同,虽然小黄车通过活动刺激了他们下载总数的增加,同时也使的同行竞争品的下载幅度也伴随的增加。如果将他们的时间拉长、放远看,他们会呈现出一个固定的模式。这属于市场的波动。 站在用户的角度单独来看小黄车的数据。在活动初期和中旬,用户下载量属于向下的趋势,到后期下载量暴增长。团子认为,由于本次活动的时间周期为一个星期,在活动前期和中旬,用户正在忙于自我储备小黄人卡片。当活动延续到后期时(小黄车在产品的设计上面,时刻提醒本次活动即将结束、同时时刻更新获奖的人数),让用户产生了紧迫感和渴求感,使得很多用户由于手中缺少某一张卡片,希望可以通过好友互换获得那张卡,获得7元现金的奖励。因此激励用户分享、进行用户互动,使得活动后期用户下载量大增。 总结:前期相关活动的安排,对本次活动的推广有很大的帮助。 好友互换功能的设置,使得用户与朋友之间的互动大大增加,从而后期用户下载量大大提高。 活动的设计,包括获奖人数、活动时间的提醒,激发了用户的渴求度、紧迫感,使得活动氛围大大增加。 有时候因为数据的不全面性,导致数据分析的结果出现偏差。 (责任编辑:admin) |