最好的方式是利用EXCEL文档的方式整理,将文档导入上传。这里我借鉴了一些客服系统的机器人中心文档,将他们的文档进行归类,整理了如下模版 这样的话,公司即使没有客服系统,但通过日常的文档归类,也可以快速的建立词库。 基于字符串的匹配算法 在产品设计中,这套系统还是基于字符串匹配的算法。利用正相最大匹配、逆向最大匹配分、以及最小切分 那么什么是正向匹配算法? 正向最大匹配算法:从左到右将待分词文本中的几个连续字符与词表匹配,如果匹配上,则切分出一个词。 但这里有一个问题:要做到最大匹配,并不是第一次匹配到就可以切分的 。我们来举个例子: 待分词文本如下: content[]={"产","品","经","理","从","此","站","起","来","了","。"} 词表: dict[]={"产品", "产品经理" , "从此","站起来"} 这里CONTENT[1]开始进行从左到右正向扫描,那么扫描到第一个content[1],这个时候扫描的为“产”字,扫描到第二个content[2],这个时候扫描到[产品];和dict[1]匹配上了,但是因为字数才2个字,需要为3个字,就继续这样向下扫描。 循环处理,最终将词语扫描出来。但这样扫描出来的结果可能为:产品/产品经理/从/此/站起/来,或产品/产品经理/从/此站起/来...... 等结果,利用最小切词,切词的换算方式,但当然既然采用的是基于字符串匹配的分词方法,其劣势就在这里,切分为导致歧义问题。 因此我们会把逆向最大匹配、正向最大匹配、最少分词结果进行综合匹配。最少分词就是将针对正向、逆向的问题,将双向切分的结果进行比较,选择切分词语数量较少的结果。 机器人知识库初始化 机器人在设置中,建议一开始没有词库的时候,产品经理需要考虑一些基本词库,这些词库是公司名称、公司产品、微信公众号、网站地址等 【机器人初始化】 这样设计的理由很简单,这是公司的基本问题或回答。在这套客服系统机器人是对外或甚至以后运营盈利情况下,方便客户首先设置好自己的基本机器人资料。 除了以上的机器人基本词库以外,还有机器人寒暄词库,并且产品设计中要对每一个类型的词库回答进行限制。 比如当问了3个问题,都无法匹配到机器人的答案,机器人应该以转换人工的提醒方式或回答方式,让用户去寻找人工解决办法。
【切换人工】 在当前的机器人系统中,在这个产品设计我一直定位该产品是辅助于人工客服去减少工作量,增加工作效率。机器人并不能完全替代人工,所以时刻保持机器人与人工的切换,让用户能够获得好的解决体验。 总结 在当下科技不断发展的时代,都说是AI的时代,从以前的大数据到如今的AI时代,智能机器客服系统就是典型的一个产品。 虽然对于PM来说,客服系统的难点在于如何去跑通公司客服业务流程,建立起一套好的服务流程。 1.分担客服工作量 2.积累客服经验,不断完善问题库 3.自定义机器人样式,模拟人工聊天。 但难点也在于如何通过人工客服去积累学习更多的知识,以及通过数据渠道获得客服以及所在客户行业的专业基础知识。 (责任编辑:admin) |