第一站 - 轻松上网从此开始!

上网第一站

当前位置: > SEO >

客服系统机器人产品设计详解——智能回答(2)

时间:2017-10-25 09:36来源:我来投稿获取授权
以下内容来自网络或网友投稿,www.swdyz.com不承担连带责任,如有侵权问题请联系我删除。投稿如果是首发请注明‘第一站首发’。如果你对本站有什么好的要求或建议。那么都非常感谢你能-联系我|版权认领
最好的方式是利用EXCEL文档的方式整理,将文档导入上传。这里我借鉴了一些客服系统的机器人中心文档,将他们的文档进行归类,整理了如下模版 这样的

  最好的方式是利用EXCEL文档的方式整理,将文档导入上传。这里我借鉴了一些客服系统的机器人中心文档,将他们的文档进行归类,整理了如下模版

  这样的话,公司即使没有客服系统,但通过日常的文档归类,也可以快速的建立词库。

  基于字符串的匹配算法

  在产品设计中,这套系统还是基于字符串匹配的算法。利用正相最大匹配、逆向最大匹配分、以及最小切分

  那么什么是正向匹配算法?

  正向最大匹配算法:从左到右将待分词文本中的几个连续字符与词表匹配,如果匹配上,则切分出一个词。

  但这里有一个问题:要做到最大匹配,并不是第一次匹配到就可以切分的 。我们来举个例子:

  待分词文本如下:

  content[]={"产","品","经","理","从","此","站","起","来","了","。"}

  词表: dict[]={"产品", "产品经理" , "从此","站起来"}

  这里CONTENT[1]开始进行从左到右正向扫描,那么扫描到第一个content[1],这个时候扫描的为“产”字,扫描到第二个content[2],这个时候扫描到[产品];和dict[1]匹配上了,但是因为字数才2个字,需要为3个字,就继续这样向下扫描。

  循环处理,最终将词语扫描出来。但这样扫描出来的结果可能为:产品/产品经理/从/此/站起/来,或产品/产品经理/从/此站起/来......

  等结果,利用最小切词,切词的换算方式,但当然既然采用的是基于字符串匹配的分词方法,其劣势就在这里,切分为导致歧义问题。

  因此我们会把逆向最大匹配、正向最大匹配、最少分词结果进行综合匹配。最少分词就是将针对正向、逆向的问题,将双向切分的结果进行比较,选择切分词语数量较少的结果。

  机器人知识库初始化

  机器人在设置中,建议一开始没有词库的时候,产品经理需要考虑一些基本词库,这些词库是公司名称、公司产品、微信公众号、网站地址等

  【机器人初始化】

  这样设计的理由很简单,这是公司的基本问题或回答。在这套客服系统机器人是对外或甚至以后运营盈利情况下,方便客户首先设置好自己的基本机器人资料。

  除了以上的机器人基本词库以外,还有机器人寒暄词库,并且产品设计中要对每一个类型的词库回答进行限制。

  比如当问了3个问题,都无法匹配到机器人的答案,机器人应该以转换人工的提醒方式或回答方式,让用户去寻找人工解决办法。

  

客服系统中的机器人

  【切换人工】

  在当前的机器人系统中,在这个产品设计我一直定位该产品是辅助于人工客服去减少工作量,增加工作效率。机器人并不能完全替代人工,所以时刻保持机器人与人工的切换,让用户能够获得好的解决体验。

  总结

  在当下科技不断发展的时代,都说是AI的时代,从以前的大数据到如今的AI时代,智能机器客服系统就是典型的一个产品。

  虽然对于PM来说,客服系统的难点在于如何去跑通公司客服业务流程,建立起一套好的服务流程。

  1.分担客服工作量

  2.积累客服经验,不断完善问题库

  3.自定义机器人样式,模拟人工聊天。

  但难点也在于如何通过人工客服去积累学习更多的知识,以及通过数据渠道获得客服以及所在客户行业的专业基础知识。

(责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发布者资料
第一站编辑 查看详细资料 发送留言 加为好友 用户等级:注册会员 注册时间:2012-05-22 19:05 最后登录:2014-08-08 03:08
栏目列表
推荐内容
分享按鈕