通过这样的方式,容易推出意思相近的词,同样也容易推出看似完全不相关但仔细想想还是靠谱的词,就像下面这样,他们虽然不见得近义词,但是很可能会点击到同一个结果上。 分形:分形理论|分形图像|分形数学 机器学习:吴恩达|数据挖掘|机器学习周志华 林心如:霍建华|任重|何润东....... 机器学习 既然上面提到了一下机器学习,其实还有更高端一点的算法,就是用机器学习了,呵呵。我们如果把上面的结果key:搜索词Aclick:结果A结果B结果C处理一下,变成下面的样子,表示每个结果集对应的搜索词。 结果A:搜索词A搜索词B搜索词C.... 结果B:搜索词B搜索词A搜索词D..... 变成上面这个样子难度不大吧,就是做个倒排就行了,好了,我们把一行看成一篇文档,每个搜索词看成一个词,不就是求各个词的相似性嘛,祭出神器Word2Vec,直接计算每个搜索词的词向量,然后计算各个词向量之间的相似性,就可以算出每个词应该推荐的词了。 在这里,我们使用了当前最火的机器学习哦,如果用word2vec的库来实现的话,代码同样不超过20行,呵呵,word2vec我之前的文章也有说过,可以看看底部的链接 模型MIX 上面说了四种模型,如果使用呢?呵呵,相关搜索不是有很多词嘛,很简单拉,每个模型分几个词,看看哪个模型效果好,哪个模型出来的词用户点得多再调整呗,我们看看京东,搜索资治通鉴的时候他们的相关搜索如下。 我估计啊资治通鉴中华书局,资治通鉴柏杨这种就是第一种模型推出来的,就是后继词部分推荐出来的,而史记,二十四史这类应该就是通过协同过滤推荐出来的,至于是哪种协同过滤就不好推测了。 二,刷搜索刷下拉框和百度分享原理
刷搜索刷下拉框原理 搜索引擎下拉框:当用户在搜索框中输入一个词的时候,搜索引擎搜索框会智能匹配出与搜索词相关的,并且达到一定搜索量的后继词。通常有10个以内的后继词推荐出现。 百度搜索下拉框:又叫百度联想区,百度推荐词,百度下拉菜单。 搜索引擎下拉框原理: 搜索引擎会从自有词典和用户行为产生的巨大搜索词中,生成搜索引擎推荐词库,当用户搜索的关键词在推荐词库中有匹配词的时候,就会动态的生成后继词的推荐菜单,并且按搜索量从高到低依次排序,最大数量为十条。 刷搜索引擎下拉框注意几个关键点:MAC地址,IP地址,浏览器COOKIES,搜索行为多样性,做到从设备,软件,到用户的模仿 真实用户的搜索行为。 关键词和后继词搜索量十分大的时候,基本没有办法完成成本很高,所以只有刷本身流量比较少的关键词。 刷百度分享原理 百度分享的官方定义和作用: 第一:引入社会化流量,用户将网站内容分享到第三方网站,第三方网站的用户点击专有的分享链接,从第三方网站带来社会化流量。 第二:提升网页抓取速度,使用了百度分享的网页可以更快地被百度爬虫发现,从而帮助网站的内容更快地被百度抓取。 第三:展示网页分享量,使用了百度分享的网页被用户分享后,可以使该网页被分享的次数展示在百度的搜索结果页中,辅助用户判断网页质量,提高点击率。 刷百度分享的方法: 第一:加入互刷群,这样就可以保证分享IP的广泛性。 第二:提高分享的真实性,需要从搜索引擎搜索相应关键词进入网站,停留时间,浏览量要自然,每个访客的独特性,然后再分享。 第三:注意分享之后的回流,也就是说当你收藏分享之后,最好在从分享页面经常回来浏览网站。 第四:注意分享的频率,要稳定,程序渐渐的增加。 第五:用软件刷分享。 (责任编辑:admin) |