今年年初出于个人兴趣,我开始了对人工智能的研究。为了更好理解人工智能和设计的关系,我开始学习机器学习、深度学习、Alexa开发等知识,从当初觉得人工智能只会让大部分设计师失业,到现在觉得人工智能只是一个设计的辅助工具,也算是成长了不少。这次希望能将积累的知识写成一本电子书,没别的,因为字太多,更重要的是这样很酷。由于写作时间可能太长,互联网每天都在变化,一些比较前沿的思考可能转眼成为现实,所以先把前四章陆续发出来。前四章主要讲了现在人工智能的基础知识、底层设计、互联网产品设计以及人工智能与设计的关系,后面会通过3~4章详细分析人工智能对不同行业设计的影响。 目前考虑的领域是室内设计、公共设计和服务设计。后续会在Github上对现有内容进行更新迭代(Github链接以后再公布),等全部内容写完会把这些内容制作成完整的电子书,敬请期待。 这部分是1-2章。 人工智能的发展历史 说起人工智能这词,不得不提及人工智能的历史。人工智能的概念主要由Alan Turing提出:机器会思考吗?如果一台机器能够与人类对话而不被辨别出其机器的身份,那么这台机器具有智能的特征。同年,Alan Turing还预言了存有一定的可能性可以创造出具有真正智能的机器。 说明:Alan Turing(1912.6.23-1954.6.7)曾协助英国军队破解了德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。因提出一种用于判定机器是否具有智能的试验方法,即图灵试验,被后人称为计算机之父和人工智能之父。 AI诞生 1956年,在达特茅斯学院举行的一次会议上,不同领域「数学、心理学、工程学、经济学和政治学」的科学家正式确立了人工智能为研究学科。
△ 2006年达特茅斯会议当事人重聚,左起:Trenchard More、John McCarthy、Marvin Minsky、Oliver Selfridge、Ray Solomonoff 第一次发展高潮(1955年—1974年) 达特茅斯会议之后是大发现的时代。对很多人来讲,这一阶段开发出来的程序堪称神奇:计算机可以解决代数应用题、证明几何定理、学习和使用英语。在众多研究当中,搜索式推理、自然语言、微世界在当时最具影响力。 大量成功的AI程序和新的研究方向不断涌现,研究学者认为具有完全智能的机器将在二十年内出现并给出了如下预言: 1958年,H. A. Simon,Allen Newell:十年之内,数字计算机将成为国际象棋世界冠军。十年之内,数字计算机将发现并证明一个重要的数学定理。 1965年,H. A. Simon:二十年内,机器将能完成人能做到的一切工作。 1967年,Marvin Minsky:一代之内……创造「人工智能」的问题将获得实质上的解决。 1970年,Marvin Minsky:在三到八年的时间里我们将得到一台具有人类平均智能的机器。 美国政府向这一新兴领域投入了大笔资金,每年将数百万美元投入到麻省理工学院、卡耐基梅隆大学、爱丁堡大学和斯坦福大学四个研究机构,并允许研究学者去做任何感兴趣的方向。 当时主要成就: 人工神经网络在30-50年代被提出,1951年Marvin Minsky制造出第一台神经网络机。 贝尔曼公式(增强学习雏形)被提出。 感知器(深度学习雏形)被提出。 搜索式推理被提出。 自然语言被提出。 首次提出人工智能拥有模仿智能的特征,懂得使用语言,懂得形成抽象概念并解决人类现存问。 Arthur Samuel在五十年代中期和六十年代初开发的国际象棋程序,棋力已经可以挑战具有相当水平的业余爱好者。 机器人SHAKEY项目受到了大力宣传,它能够对自己的行为进行「推理」;人们将其视作世界上第一台通用机器人。 微世界的提出。 第一次寒冬(1974年—1980年) 70年代初,AI遭遇到瓶颈。研究学者逐渐发现,虽然机器拥有了简单的逻辑推理能力,但遭遇到当时无法克服的基础性障碍,AI停留在「玩具」阶段止步不前,远远达不到曾经预言的完全智能。由于此前的过于乐观使人们期待过高,当AI研究人员的承诺无法兑现时,公众开始激烈批评AI研究人员,许多机构不断减少对人工智能研究的资助,直至停止拨款。 当时主要问题: 计算机运算能力遭遇瓶颈,无法解决指数型爆炸的复杂计算问题。 和推理需要大量对世界的认识信息,计算机达不到「看懂和听懂」的地步。 无法解决莫拉维克悖论。 无法解决部分涉及自动规划的逻辑问题。 神经网络研究学者遭遇冷落。 莫拉维克悖论——如果机器像数学天才一样下象棋,那么它能模仿婴儿学习又有多难呢?然而,事实证明这是相当难的。 第二次发展高潮(1980年—1987年) (责任编辑:admin) |