偏见。当科学或技术决策是基于一套狭隘的系统、结构或是社会概念和规范的时候,由此产生的技术可能会使某些群体获得特权,而使另一些群体受害。2015年的一项研究发现,谷歌的广告算法展示给女性用户的招聘职位要比给男性展示的待遇低。 类似地,ProPublica的一项调查显示,美国执法机构使用的算法错误地预测,黑人被告比拥有类似犯罪记录的白人被告更有可能再次犯罪。这种偏见甚至可能会被嵌入到神经装置中。事实上,研究过这类案例的研究人员已经表明,要以一种数学严谨的方式来严格定义公平是非常困难的。 工业界和学术界已经在讨论一些对抗技术偏见的实际步骤。这样的公开讨论和辩论是极有必要的,不论是对于定义有问题的偏见,还是对于定义更普世的“常态”来说都是如此。 我们主张让对抗偏见的对策成为机器学习规范的一部分。我们还建议可能的用户群体(特别是那些已经被边缘化的用户群体)在设计算法和设备时就大胆发声,确保偏见在技术开发的第一个阶段就得到处理。 负责任神经工程学 提出这些建议是为了呼吁工业界和学术界承担起随着这类神经科技设备和系统而来的相关责任。为此,他们可以借鉴之前已经为负责任创新而制定出来的一些框架。 除了之前提到的几点指导方针之外,英国工程和物理科学研究理事会也提出了一个框架来鼓励创新者“预测、反思、参与和行动”,推动符合公共利益和社会期望的科学和创新。 在人工智能领域,IEEE标准协会在2016年4月创建了一个全球伦理倡议,目的是将伦理融入到所有人工智能和自主系统的设计流程中。 历史表明,在企业界,追逐利润往往会凌驾于社会责任之上。虽然在个人层面上,大多数技术专家的目的都是想要造福人类,但是他们仍有可能碰到自己未曾准备好要去面对的复杂伦理困境。我们认为,通过将相关伦理准则引入到工业界和学术界中来,可以改变业界普遍的思维模式,增强设备制造商的应对能力。 第一步就是让伦理成为工程师、其他技术开发人员和学术研究人员加入公司或实验室时的标准培训的一部分。教育员工更深入地思考如何追求科学进步,实施有望建设社会而非破坏社会的策略。 这种方法基本上遵循了医学专业正在使用的思路。医学生接受的教育包括病人病情保密、不伤害原则、行善原则和公正原则,他们还要遵守希波克拉底誓言,坚持这个职业的最高道德标准。 神经技术可能带来的临床效益和社会效益是巨大的。要想获得这些效益,我们必须尊重、保护和支持人性中最珍贵的品质,以此指导神经技术的发展。 (责任编辑:admin) |