比如向一位客户推荐产品时,我们可以粗暴的从他以往的购买记录判断他的喜好和风险承受能力,也可以通过他留在金融机构的其他数据:房产证、学历、行驶证来给出更完善的画像,教育程度偏低的人或许更倾向于保守投资,住在繁华地段、开豪车的人也许会因为更高的生活成本而无法承受风险…… 我们甚至可以把电商的推荐算法应用起来,看看住在同一片区域的人是否有着相似的理财倾向。 总之,这一切都要依靠银行自己的非结构化数据。 尴尬的国情下,金融数据创业者能和BAT共舞吗? 当我们把目光放回中国,情况又有些不同。 在金融机构数据的敏感度上,因为众所周知的原因,相比国外我们有过之而无不及。至于金融机构本身数据技术能力就更为尴尬,国有银行在金融产业占有优势地位,可大体量、国字头往往又意味着在新晋技术上稍微落后。 最后导致中国全体金融机构对于大数据的利用都较弱。这其中又会存在着哪些机会? 首先,BAT等巨头企业恐怕会成为这种情况下最大的受益者。 当无法利用自身数据,却又想追赶上大数据浪潮时,金融机构们纷纷开始选择直接利用科技企业的大数据成果。而BAT们垄断了大量的社交数据、电商数据和行为数据。甚至可以说,走出不能被利用的数据禁地,就又进入了被BAT们垄断的大数据海洋。 加上BAT的技术人才储备和丰富的营销渠道,直接把风控模型和精准营销交给他们是很好的选择。 但这也不证明创业团队就失去了用武之地。
BAT们虽然有着绝对优势,但他们多少都会涉及到金融业务,难免会和金融机构有竞争关系。目前双方处于“搁置争议,共同开发”的时期,不过也给了小团队另一种筹码。 想要与大象共舞,小团队显然不必用数据量和BAT们硬碰硬,从细微之处进行创新是个不错的选择。 比如算法:试着从现在流行的深度学习、增强学习等等角度出发,用算法去解决金融行业的需求,应用于高频交易的“冰山算法”就是个不错的例子。 比如智能硬件:在物联网的未来,用各种智能硬件增加数据收集的维度一定是重要趋势。开发能收集丰富农业、工业、零售业数据的智能硬件,一定会引起金融机构的兴趣。 比如区块链:用区块链安全、隐私等特性解决金融机构数据敏感这一终极问题,还担心拿不到融资?以ICO潮的热度来看,相信我国一定有足够多的区块链技术团队! 能做到以上几点中的任何一点,就算不能拿到金融机构的巨额投资,也一定能拿到BAT的投资,拿不到投资一定会被BAT收购,没被BAT收购……那就是被BAT抄袭了。 玩笑归玩笑。金融行业大数据领域大有可为,不管是大公司还是小团队,现在都还站在同一起跑线上呢。 (责任编辑:admin) |