此外,如果数据分布在不同的系统和孤岛中,那么企业可能需要花费大量的时间来构建各个集成,从而使模型完全正常运行。有些行业围绕整体式和异质性技术堆栈建立,使集成很难在客户之间重复使用。如果无法获取集成服务提供商,那么这家AI创企很快就可能发现自己陷入了这样的泥潭:只有为每个新客户构建定制集成,才能部署其AI系统。数据的结构方式也可能因客户而异,这就要求AI工程师花费额外时间对数据进行规范化或将其转换为标准化模式,从而应用AI模型。企业可以采用建立公共集成库的方法降低成本,因为它可以在新客户中被重复使用。 训练成本大多数建立AI模型的方法都需要对数据进行标注,这对AI创企来说是最大的和最可变的成本之一。如果这些示例简单明了或是通俗易懂,外行人就可以进行标注。例如,在图片中画一些苹果,然后在所有苹果周围画一个框,即可标注为外包劳务服务。 但有时,注释需要更多的专业知识和经验,例如根据视觉线索来确定苹果的质量和成熟度,或者判断石油钻机上的一小块锈斑是否具有风险。对于这种更专业的劳动力,企业可能需要建立一个高薪的内部专家标注团队。根据企业的标注方式,可能还必须构建自己的标注工作流工具,尽管Labelbox等公司目前已经开始提供此类工具。 在某些AI应用程序中,终端用户会是最有效的标注器,企业可以通过设计产品来减轻标注成本,这样用户就可以在与产品交互时进行数据标记。例如,Constructor提供针对电子商务的人工智能网站搜索,观察用户实际点击和购买每个产品的搜索词,使这些网站能够优化搜索结果从而获得更高的销售额。这种标注不可能通过外包或专家搜索服务进行人工操作,而且这种方式大大节约了Constructor潜在的巨额标注成本。 即使受到了高精度的训练,但当模型无法确切地解释一项新输入的内容时,仍然需要进行偶尔的人工干预。根据模型向终端用户传递价值的方式,该用户自己可以对模型进行更正或标注,企业也可以通过使用质量控制的“AI保姆”来处理异常。如果企业正在建模的环境不稳定且变化速率很高,那么企业可能需要在稳定状态下保留一组标注器,以便根据需要使用新的数据更新模型。 扩展AI业务第一批成功的AI企业进入市场时,通过提供无AI的工作流工具来捕获训练AI模型的数据,并且该数据最终提高了工具的价值。这些初创企业在早期就能够实现软件利润,因为数据和人工智能在其价值主张中居于次要地位。然而,随着市场转向更专业的AI应用,下一波AI创企将面临更高的启动成本,并将耗费更多的人力来为客户提供初始价值,导致其成为低利润率的服务企业。 获得大量客户和数据最终将降低单位经济效益和构建至关重要的复合防御能力,但许多初创企业并不确切地了解这一点,也不明白他们需要采取哪些行动才能更快地实现目标。而出色的AI创企则会通过这种方式进行优化权衡,有计划地进行投资并迅速扩张。 (责任编辑:admin) |