支付方也在逐步开始利用大数据制定报销决策,而且已经可以看到一些趋势。加上国家级医疗保险和医疗补助服务中心的动作,医疗价格的透明度已有所提高,同时超过30个州建立了所有保险索赔数据库以作为大型报销信息库。几家保险公司也因此盈利,比如联合健康集团的一个业务板块Optum就通过梳理处方药的索赔记录帮助雇主节约医疗支出。 对于制药企业来讲,算是取得了更大进展,许多公司应用数据分析助力研发。大多数制药企业在从动物试验到I期临床试验期间,使用预测模型来优化给药,但数据分析还没应用于后期的试验中,如各类药物临床试验入组和排除标准。此外在研发上的应用可以快速确定目标人群,从而节约时间,降低成本。如合同研究组织(Contract research organizations)比5年前应用更广泛,以前是使用统计工具改善临床试验管理,现在可以从数据中得出更多结论。一些领先的玩家一直在使用临床试验数据来给药物贴标签(也就是说,看药物有没有其他用途)。同时,FDA与医疗保险公司和电子病历提供商合作开展Sentinel Initiative项目,收集1.78亿患者的药品不良反应的数据。 在商业模式创新上也不断生根发芽,例如Explorys,一家可以查看4000万份美国患者病例的分析公司,在2015年4月被IBM收购,来加强其健康数据分析工作力度。 患者交流社区(如PatientsLikeMe)也是一个不错的数据源,它在公共卫生监测中的应用正在产生新的重要作用,如2014年爆发的埃博拉和齐卡病毒。 总之,想要整合数据分析,医疗领域还有很长的路要走。但同时,这个可能性要比5年前设想的大得多。我们不要心急,随着尖端技术的慢慢渗,整个医疗系统会随之革新。在将来,随着深入学习的进步,尤其是自然语言和视觉技术的发展,可能有助于医疗活动的自动化,节约劳动力成本。现在一家医院劳动力成本占了60-70%,这将是一个重要的商业机会。 那么,数据分析应用在医疗领域存在的问题又是什么呢?答案即为缺乏可以让数据实现交互性的操作。患者的生理数据常常存在于不同的系统中,各个系统不能便捷地实现无缝信息共享。 医疗领域的数据共享,存在很多抑制其进共享的因素。例如,服务方和制药企业可能不愿与支付方共享更多数据,因为数据可能会暴露企业的盈利模式。除此之外,在个人健康管理的过程中,收集数据的可穿戴暂时还没有显示出临床应用价值。同时,鉴于医疗健康行业的大环境和政府政策,导致数据的利用过程可能会比较缓慢。 不过虽然数据分析在医疗的应用存在一些抑制因素,但相比过去的诊疗方式,我们可以看到大数据在当今诊疗过程中的意义。传统意义上,诊疗依赖于病史、医学检验和实验室检查结果。如今,一系列新的数据表正在由用户的可穿戴和家庭健康设备(如血压监控仪或胰岛素泵)产生,这部分数据是有很大参考价值的。一些创新者正在试验,希望这些数据对于临床也可以起到直接有效的作用。 个性化的医疗服务 因每个人疾病史和基因构成的不同,所以标准化治疗方案根本不适合所有人。但是每个人的特征却对定制化的服务很有用。随着基因测序成本的下降、蛋白质组学(蛋白质分析)的出现,以及越来越多能够提供实时数据流的传感器、监视器和诊断技术的突破,患者的数据集将变得越来越精细。未来的创新技术(如免疫和CRISPR/Cas9 基因组定点编辑技术)可以最大限度地提高每个人的体格。 先进的分析方法可以将标准化的疾病治疗转化为个性化的风险评估、诊断、治疗和监测。一些医疗服务方已经应用在工作中,临床发展潜力无限。如,美国中西部地区的一个医疗保健系统Essentia Health,就正在对充血性心力衰竭患者进行家庭监护,将30天再住院率降到2%,远低于全国25%的平均水平。
1、医疗的现状与未来 在医疗领域,个性化是基于患者的生物标志物、遗传情况和具体症状的数据来实现的。使用这些精细化数据,可以确定量身定制的个人治疗方案。除此之外,个性化医疗其实可以改变整个健康医疗大系统。 (责任编辑:admin) |