计算相似度除了之前我们提到的余弦公式,还可以根据其他的业务数据。比如对于网易云音乐而言,两首歌越多的被加入两个歌单,可以认为两首歌越相似。对于亚马逊而言,两个商品越多的被同时购买,则认为两个商品相似。这里其实是需要根据产品的具体情况进行调整。 4. 基于用户的协同过滤 基于用户的协同过滤(user-based CF),通过用户对不同内容的行为,来评测用户之间的相似性,基于用户之间的相似性做出推荐。这部分推荐本质上是给相似的用户推荐其他用户喜欢的内容,一句话概括就是:和你类似的人还喜欢下列内容。 需要计算用户u对物品i的兴趣,公式如下(可以和基于物品的协同过滤仔细对比): 这里N(i)表示对物品i有过行为的用户集合,wuv使用用户u和用户v的相似度,rvi表示用户v对物品i的打分,示例如下: 同样的,这里计算相似度如果用到余弦公式,其实最主要的是选好维度。对于音乐而言,可能是每首歌都作为一个维度,对于电商而言,也可以是每个商品都是一个维度。当然,用一些可理解的用户标签作为维度也是可以的。 5. 基于标签的推荐 标签系统相对于之前的用户维度和产品维度的推荐,从结构上讲,其实更易于理解一些,也更容易直接干预结果一些。关于tag和分类,基本上是互联网有信息架构以来就有的经典设计结构。内容有标签,用户也会因为用户行为被打上标签。通过标签去关联内容。 需要计算用户u对物品i的兴趣,公式如下(可以和基于物品的协同过滤仔细对比): 这里N(u.,i)表示用户u和物品i共有的标签,wuk使用用户u和标签k的关联度,rki表示标签k和物品i的关联性分数,示例如下: 标签查找的方法这里有很大可以发挥的空间,比如,通过知识库进行处理,或者语义分析处理。而对于一些设计之初就有标签概念的网站, 就比较容易,比如豆瓣和知乎。对于知乎而言,公共编辑的标签是天然的标签内容,对于知乎的用户而言,浏览回答关注等行为则是天然的用户标签素材。 6. 总结 对于推荐而言,这几种基本的方法彼此之前都有些应用场景的差别:比如基于知识的推荐,这是比较老旧的推荐方法,但是对于系统和结构比较好的内容,则低成本且高效。比如基于内容的协同过滤,就适用于内容比较有限,但是用户数特别多的情况,比如电商公司。比如基于用户的协同过滤,则比较容易根据用户的兴趣点,发觉热点内容,比如新闻门户。对于基于标签的推荐,有标签系统的很占便宜,它在灵活性和可控制性上都好一些,但是做好很难。 本期主要是介绍了常见推荐算法的基本原理,那么在推荐系统策略设计的时候,有哪些需要特别注意的地方呢?我们怎么衡量一个推荐系统的优劣呢?推荐系统有哪些典型的应用场景呢?欢迎关注专栏,继续阅读下期。 #专栏作家# 潘一鸣,人人都是产品经理专栏作家,THU/PM,知乎专栏:产品逻辑之美 (责任编辑:admin) |