这是我们某个电商类客户反馈出的问题,他们新上线了某个电商网站,从访问量、跳出率等这些指标来看表现都不错,偏偏订单转化率低,不知道怎么回事。 遇到这种情况,只能说别急,我们先从数据上细分看看。细分对虚假流量是致命的,因为通过细分我们一定能识别出虚假流量的模式和规律。 网站整体的访问量变化趋势
从上图可以看出,9月3号PV较平时较低;访问量和唯一身份访问用户数几乎相等,即人均访问次数接近与1,每个用户只访问了一次,月回访率很低。 新访占比和跳出率对比分析
从上图我们可以得出这些信息: 新用户占比接近于80%,说明新用户居多 跳出率在45%左右,跳出率很低,说明流量质量还可以 但是如果我们深入想一下,会发现有如下问题: 新用户占比和跳出率指标成反比关系,正常情况下,新用户占比和跳出率指标成正比关系,新用户占比高的话,跳出率也高 跳出率低,为什么转化率也那么低呢? 不同城市不同转化指标对比
我们找了流量排名Top8的城市的对比数据,这Top8的城市数据对流量贡献较大,且上海的销售额占总销售额的1/3左右,河南订单转化率较高。城市为“未知”的流量贡献也较大,跳出率低,但是订单转化率远小于0.01%。显示为未知,说明抓不到这些流量来自于哪个IP段,但是访问量足够大,所以需要引起注意,有作弊嫌疑。 未知城市不同时间段分类对比分析 选择了最近一个月的数据,看不同时段这些流量的分布情况(图略),发现凌晨1点到凌晨6点流量占总流量的25%,占比较高,更奇怪的是,晚间流量每个时段较平均,流量差不多,这是不符合常理的,需要进一步分析。 夜间流量分类对比分析
我们发现这些流量中72%的流量来自于广告系列,但是转化率较低,不知道具体哪个广告系列来源拉了后腿。 夜间流量广告系列来源占比分析
发现广告系列流量中大部分都来自于sm这个渠道,此时可以把分析范围缩小到sm这个渠道。 sm渠道指标整合分析
sm渠道的访问量很大,新用户占比90.31%,而跳出率为20.32%,转化率0.08%。基本可以断定是sm渠道出问题了。 sm渠道细分落地页和非活动页面数据表现 通过进一步细分,发现sm渠道大部分流量都流入了活动落地页(图略),跳出率低于23%,且每次访问的平均浏览深度接近于1,有趣的是,另一部分非活动落地页的,页面浏览深度在几百个页面,非正常人类行为,它的目的只是为了平均整体流量。 sm渠道活动落地页点击图分析 同时我们还可以结合不同落地页的点击图进行分析,你会发现更多有趣的现象。 至此,大功告成。 案例总结 从上面的案例我们看到通过层层细分,层层递进的方法我们找到了虚假流量,所以要想找出虚假流量,我们需要密切关注如下几个方面: 给渠道打好标记,目的方便分割流量 为每一个渠道打好UTM标记,那么渠道会贯穿于用户的整个访问过程中,方便按渠道分组查看每个渠道的表现,避免其它渠道的干扰。 流量产生的时间 找到异常流量发生的时间点,然后将时间细化到每小时的访问数据,如果流量过于集中在某个时段,或者在不恰当的时间点出现了流量激增的情况,这时候就要引起注意了。 流量的地理来源 通常情况下,访客会来自不同的地理位置,如果流量过于集中在某个地区,或者采集不到地区的地方出现了大量的流量等等都是很可疑的。 流量的用户终端 不同的渠道覆盖不同的用户群,所以各自的用户终端会有一定的区别。比如对于小米应用商店这个渠道来说,它的用户很可能排在前10的手机都是小米手机,而对移动MM来说,他们的用户都来自于移动运营商。排除这些特殊渠道的应用商店,大部分渠道的用户终端跟整个互联网终端分布是类似的。我们可以通过看行业报告或者查询数据指数产品来了解这些数据,把这些数据作为行业基准值,进行对比。另外我们还可以重点关注设备终端类型、操作系统、联网方式、运营商、地理位置等设备属性。 流量的跳出率和新访用户占比 跳出率和新访用户占比成正比关系,另外如果流量在某个时段跳出率突然增高,可以结合上述维度进行细分查看,哪个细分维度的跳出率增高。 流量的转化 (责任编辑:admin) |