几何学是一门研究形的科学,以人的视觉思维为主导,培养人的观察能力、空间想象能力和洞察力。它本是数学领域的一个分支,与设计看似没有什么交集。本文将会从理性的角度,剖析设计背后的几何原理,用平实的语言表达晦涩难懂的数学,用数学阐释设计。
蜂窝猜想 蜜蜂被誉为动物界最勤劳的物种,殊不知,它们也是这世上最懂得“偷懒”的动物。四世纪古希腊数学家佩波斯提出,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。当时的数学发展还很落后,这一猜想1600年以来,无人能证明。 直到20世纪末,美国数学家哈勒斯在考虑了每一个蜂窝周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最小。周长最小,意味着筑巢时采用的蜂蜡也最少。这个证明被他放在了互联网上,证明过程有19页之长,直到2001年,他对证明又进行了补充使之完善。 此后,蜂窝猜想变成了蜂窝定理:以同等面积的图形对一个平面进行分隔,周长为最小的几何形状是蜂窝状的正六边形。而蜜蜂筑巢的这一行为,也被誉为“最有效劳动的代表”。 艺术细菌——粘液菌 我们都知道,两点之间,线段最短,但如果很多点呢?怎样连接才是最有效率的做法?这就引出了我们第二位主角——粘液菌。这里称它为细菌不是很严谨,它是一种有机生命体,一些特征与真菌类似,其他特征与原生生物类似。它们没有大脑,在腐烂的木头、湿地上蔓延,摄取细菌和腐烂的蔬菜。(敲黑板!)没有大脑意味着什么,意味着它们不能思考,所有行为仅受本能支配,科研者却对这种无脑生物产生了浓厚的兴趣。
研究者拿粘液菌做了一个实验。实验中,他们将粘液菌最喜欢的食物——燕麦片放置于琼脂板上,并标明东京周围各个城市节点,在东京这个节点上注入粘液菌。然后观察它们的扩散方式。
可以看到,实验开始后,群菌开始向四周蔓延开来,8小时后,形成了许许多多的脉络,这是它们输送营养的管道。随着实验的进行,大部分的脉络开始退化消失,只留下几条清晰的管道。最后,它们连接了所有节点,只留下最清晰有效的线路。 实验结果人们发现,这些脉络和东京现今的城市交通规划有很多相似之处,有些甚至要更合理。 这些菌群没有大脑,但它们为了生存,只能寻找路途最短的管道为母体输送营养。正是这种求生的本能,给我们的交通规划者们带来了巨大灵感。在设计城市公路时,优先需要考虑的是主干道的效率,这个道路越短意味着效率也最高。在这一方面,人类和细菌达成了共识,我们都在寻找效率最高的设计方案。如果我们在设计之初,考虑了让粘液菌也参与进来,会不会比现在的设计规划更便捷、更有效率。 黑胶唱片 说起黑胶,很多人并不感到陌生。热衷于模拟录音的音乐发烧友,收藏黑胶是他们表达对音乐热爱的一种“奢侈”的方式。黑胶相比于现代的CD,有着不可替代的优势——漂亮的唱盘、高贵的唱片机以及所传达出的独特的情感。 想要了解黑胶艺术,仅靠听是不够的,它背后的发声原理同样值得我们去一探究竟。
唱片表面有着一圈圈细致的拉丝工艺,这可不仅仅是为了美观。放大看,其实是呈螺旋线状的声槽,音频信号就记录在这里。声槽由外到内有四个部分组成,顺序为:导入槽、声槽、过度槽、导出槽和终止槽。唱针由导入槽引入声槽,乐段之间有若干秒的无声的过度槽,过度槽螺距也较宽,用肉眼可以分辩。声槽的末端与导出槽相接,乐曲结束后唱针由导出槽引至终止槽。最后终止槽是一个闭环设计,它可以让唱针停留原地。 这一过程过程中,声音依靠唱针读取(即磨擦)唱盘的沟痕两侧,通过磨擦所产生的震动借由针杆传回唱头,继而产生磁电转换输出电流;再将这些电流转换成电压形式,输入到前级,再经过等化线路还原,继续进入信号放大部分,最后经由喇叭播放出音乐。 这里我们可以思考一个简单的问题,为什么传统意义上的黑胶唱片通常采用圆盘的设计? 相同运动轨迹直径内,圆的面积最大,存储信息量最大 圆在静止和工作时面积相同,不占空间 同心圆设计,便于旋转和拿取 永不松动的螺母 (责任编辑:admin) |