正常的逻辑中,用户的发给小冰的应该是一张狗的照片,可是有的用户可能就是发了一张不是狗的照片,如下所示,那么这个时候就是边界case,需要额外处理。用户发来的可能是语音、文字、其他任何照片,每一种的处理都是需要单独设计的。
微软小冰之“小冰识狗” 多说一点,在封闭域对话的边界设计中,很难做到万无一失周密完全,因为用户输入可能会千奇百怪,所以最佳也是最讨巧的方式,就是用开放域对话来“兜底”。 3.2 开放域对话 开放域是相对于封闭域而言的。由于对话机器人的话题几乎都源自用户,而每个用户可能有任何输入,话题就会无法穷举,且在多个场景中跳来跳去,进而形成了所谓的开放域对话,也就是“啥都能聊”。 2011年在人人网上横空出世的“小黄鸡”算得上是国内最早出名的开放域对话机器人,其后发展最好的当属微软小冰。 开放域对话最大的特点是:输入无法穷尽,导致输出无法穷尽,而且对话没有确切的结束点,无流程可言。 我们一般情况下想去考验一个机器人是否智能,通常考验的就是开放域对话,大名鼎鼎的“图灵测试”通常所面向的也是开放域对话能力。 从可以承载的对话输入范围来讲,开放域对话像极了搜索引擎,我们可以在百度搜索中输入任何的词句,百度几乎都会给出结果页面(除了敏感词);相应的,在开放域对话中,我们也是可以说任何话,机器人也应该每一句都可以回复。 3.2.1 开放域对话产品设计的基本原理 对话需要的是双方的平等。 和微软小冰聊天时,有时甚至感受不到她是真人还是假的机器——其实这并不重要,小冰正在解决开放域聊天中一个核心的问题:如何不断给用户制造话题,从而延续聊天的能量? 说到话题制造,我们先来看看开放域对话机器人到底是如何制造的: 几乎所有的开放域对话语料都源自于网络上公开的对话,譬如百度知道、知乎、豆瓣、贴吧等等,这些对话都是人与人形成的;那么,当一个机器人把其中的某些话在当时的场景下再说一遍,我们是分辨不出来这个机器人是不是真人的——这便是开放域对话机器人制造的基本依据。 当我们和一个看起来像人的机器人聊天时,由于场景发生在人与人对话的场景下,根据“知识诅咒”的原理,我们很容易带入一种“对方也是人”的感觉。而一旦对方的回话像人,我们就会认可她是人。 人与人的情感建立源自于长期的交流和沟通,聊天本身就是开放域的;所以那些乐于和机器人聊天的人类,就会越来越觉得机器人像人。 我们知道:对话机器人是一个新兴的产品,最初尝鲜的人是所谓的“种子用户”,这些人建立了与机器人之间的最早形态亲密感和信任感,这对后续的对话机器人发展积累了非常宝贵的经验。 3.2.2 开放域对话机器人的两个产品陷阱 其一,面向用户的机器学习 很多人认为,对话机器人和人聊得越多,学习的语料就越多,就可以省去很多语料获取的问题,这是一个巨大的误区。由于用户的输入无法预期,导致从用户处采集来的语料千奇百怪,而且大量骂人的脏话,非常不适合作为开放域对话语料。由于用户的语料是海量且无规则特征,导致语料清洗非常苦难,无法使用。 其二,无人为引导的个性 由于开放域的语料完全来自于互联网,所以机器人回复的话语带有何种语气很难把控,如果不加以认为干预,机器人说的话会显得时而有趣,时而刁蛮,时而无知,时而夸张,时而智慧,在用户的心智中无法用一个或几个明确的形容词去形容它,这会带来一个很尴尬的结果,用户是抱着“调戏、戏谑”的态度去对话,长此下去,想建立用户的亲密感和信任感几乎不可能。 四、对话机器人的用户价值 现在,我们试图回答一个问题:对话机器人为什么需要开放域对话?价值是什么?仅仅是为了逗比有趣吗? 这是一个非常复杂的问题。 (责任编辑:admin) |